Imaginary powers of Laplace operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaginary Powers of Laplace Operators

We show that if L is a second-order uniformly elliptic operator in divergence form on R, then C1(1+ |α|) ≤ ‖L‖L1→L1,∞ ≤ C2(1+ |α|). We also prove that the upper bounds remain true for any operator with the finite speed propagation property.

متن کامل

Complex Powers of Operators

We define the complex powers of a densely defined operator A whose resolvent exists in a suitable region of the complex plane. Generally, this region is strictly contained in an angle and there exists α ∈ [0,∞) such that the resolvent of A is bounded by O((1 + |λ|)α) there. We prove that for some particular choices of a fractional number b, the negative of the fractional power (−A)b is the c.i....

متن کامل

Imaginary Exceptions : On the Powers and Limits of Thought Experiment

Thought experiment is one of the most widely-used and least understood techniques in philosophy. A thought experiment is a process of reasoning carried out within the context of a well-articulated imaginary scenario in order to answer a specific question about a non-imaginary situation. The aim of my dissertation is to show that both the powers and the limits of this methodology can be traced t...

متن کامل

Geometry of Differential Operators, and Odd Laplace Operators

Let ∆ be an arbitrary linear differential operator of the second order acting on functions on a (super)manifold M . In local coordinates ∆ = 1 2 S ∂b∂a +T a ∂a +R. The principal symbol of ∆ is the symmetric tensor field S, or the quadratic function S = 1 2 Spbpa on T ∗M . The principal symbol can be understood as a symmetric “bracket” on functions: {f, g} := ∆(fg) − (∆f) g − (−1)f (∆g) + ∆(1) f...

متن کامل

Complex Powers of Nondensely Defined Operators

The power (−A)b, b ∈ C is defined for a closed linear operator A whose resolvent is polynomially bounded on the region which is, in general, strictly contained in an acute angle. It is proved that all structural properties of complex powers of densely defined operators with polynomially bounded resolvent remain true in the newly arisen situation. The fractional powers are considered as generato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2000

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-00-05754-3